报告题目:Large multipartite subgraphs in H-free graphs
报告人:胡平
报告时间:2022年5月16日14:30-15:30
报告地点:腾讯会议 (ID:111 795 151)
邀请单位:福州大学数学与统计学院,离散数学及其应用省部共建教育部重点实验室
报告简介:
Furedi proved that every $K_{r+1}$-free graph G with n vertices and m edges can be made r-partite by removing at most (r-1)n^2/2r - m edges.
We investigate strengthenings of his result. For r < 5, we show that every $K_{r+1}$-free graph G with n vertices and m edges can be made r-partite by removing at most 0.8((r-1)n^2/2r - m) edges,and conjecture that the same is true for every r.
We show that this conjecture implies a solution of a problem of Sudakov on making $K_{r+1}$-free graphs bipartite for large r.
Finally, we show that every $K_6$-free graph G on n vertices can be made bipartite by removing at most $4n^2/25$ edges, solving the case r=5 of Sudakov's problem.
Our main tool is Razborov's flag algebras. Joint work with Bernard Lidicky, Taisa Martins, Sergey Norin and Jan Volec.
报告人简介:
胡平于2014年在美国伊利诺伊大学香槟分校获得数学博士学位,之后在英国华威大学任研究员,2017年入职中山大学任副教授。其研究方向是极值组合,主要包括Ramsey理论,Turan理论及染色问题。