报告题目:Spectral extrema and subgraph counting
报告人: 翟明清
报告时间:2022年5月18日9:30-12:00
报告地点:腾讯会议:679-329-614
邀请单位:福州大学数学与统计学院,离散数学及其应用省部共建教育部重点实验室
报告简介:
Spectral extremal problem, proposed by Nikiforov, asks what is the maximum spectral radius of an $H$-free graph on $n$ vertices? This problem has attracted appreciable amount of interest in the past decades. Let $\rho(G)$ be the spectral radius of a graph $G$ and $spex(n,H)$ be the extremal spectral radius of the above problem. One can immediately obtain that if $\rho(G)>spex(n,H)$, then $G$ contains at least one copy of $H$. We further want to know what is the minimum number of copies of $H$ in a graph $G$ provided that $\rho(G)>spex(n,H)$. In this talk, we introduce some pioneering results on spectral extrema and subgraph counting. Some recent results of us are also mentioned.
报告人简介:
翟明清,滁州学院教授,2010年博士毕业于华东师范大学运筹学与控制论专业,2012年获评教授,2013年获评安徽省学术技术带头人后备人选, 2022年入选安徽师范大学外聘博士生导师。近年来在LAA, DM, LMA, EUJC, EJC等期刊发表学术论文40余篇,主持国家自然科学基金2项。研究方向:图谱理论,谱极值图论。