报告题目:The minimum number of clique-saturating edges
报告人:何家林
报告时间:2022年12月2日14:30-17:30
报告地点:腾讯会议:308848418
邀请单位:福州大学数学与统计学院,离散数学及其应用省部共建教育部重点实验室
报告内容简介:
Let $G$ be a $K_p$-free graph. We say $e$ is a $K_p$-saturating edge of $G$ if $e\notin E(G)$ and $G+e$ contains a copy of $K_p$.Denote by $f_p(n, m)$ the minimum number of $K_p$-saturating edges that an $n$-vertex $K_p$-free graph with $m$ edges can have.
Erd\H{o}s and Tuza conjectured that$f_4(n,\lfloor n^2/4\rfloor+1)=\left(1 +o(1)\right)\frac{n^2}{16}.$Balogh and Liu disproved this by showing$f_4(n,\lfloor n^2/4\rfloor+1)=(1+o(1))\frac{2n^2}{33}$.They believed that a natural generalization of their construction for $K_p$-free graph should also be optimal and made a conjecture that $f_{p+1}(n,\ex(n,K_p)+1)=\left(\frac{2(p-2)^2}{p(4p^2-11p+8)}+o(1)\right)n^2$ for all integers $p\ge 3$.
In this talk, we confirm the above conjecture of Balogh and Liu. The result is the joint work with Jie Ma, Fuhong Ma and Xinyang Ye.
报告人简介:
何家林,本科与博士均毕业于中国科学技术大学。目前在香港科技大学数学系做博士后。主要研究方向为极值图论中的图兰类问题,目前在JCTB与CSIAM共发表论文4篇。