报告题目:Edge coloring of hypergraphs
报告人:张霞
报告时间:2022年11月16日14:30-17:30
报告地点:腾讯会议:898-742-049
邀请单位:福州大学数学与统计学院,离散数学及其应用省部共建教育部重点实验室
报告内容简介:A k-edge coloring of a hypergraph H is an edge coloring of H with k colors such that any two intersecting edges receive distinct colors. The Erdos-Faber-Lovasz conjecture states that every loopless linear hypergraph with n vertices has an n-edge coloring. In this talk, we verify the conjecture for collision-weak hypergraphs. This strictly extends two related results of Bretto, Faisant and Hennecart in 2020. Moreover, for a general hypergraph H (multiple edges allowed), we show that H is │3∆([H]2)/2│-edge-colorable if H is a hypergraph in which each vertex is incident with at most one bunch of multiple 2-edges, which strictly extends a result of Dvorak in 2000.
Joint work with Qi Wang and Zhimin Wang.
报告人简介:
张霞,山东师范大学数学与统计学院教授、博士生导师。本科、博士就读于山东大学数学学院,2007年获理学博士学位,目前研究兴趣集中在图与超图的极值问题。先后主持3项国家自然科学基金、3项省自然科学基金。作为访问学者先后访问中国科学院数学与系统科学研究院、加拿大维多利亚大学数学与统计学系、美国威廉玛丽学院数学系。现为中国运筹学会理事、中国运筹学会图论组合分会理事、中国工业与应用数学学会ICT领域的数学专委会委员。