当前位置: 首页 | 学术交流 | 学术交流 | 正文

侯新民副教授、颜娟副教授学术报告

信息来源: 暂无   发布日期: 2017-06-07  浏览次数:

报告人:侯新民副教授,中国科学技术大学

报告时间:  2017年6月11日9:30

报告地点:数计学院4号楼229室

报告题目:Turan  number and decomposition number of intersecting odd cycles

报告摘要:Given  a graph $H$, the Turan function $ex(n;H)$ is the maximum number of edges in a  graph on $n$ vertices that does not contain $H$ as a subgraph. Let $s, t$ be  integers and let $H_{s,t}$ be a graph consisting of $s$ triangles and $t$ cycles  of odd lengths at least 5 which intersect in exactly one common vertex. Let  $\phi(n, H)$ be the smallest integer such that, for all graphs $G$ on $n$  vertices, the edge set $E(G)$ can be partitioned into at most $\phi(n, H)$  parts, of which every part either is a single edge or forms a graph isomorphic  to $H$. Pikhurko and Sousa conjectured that $\phi(n, H) = ex(n;H)$ for all  $\chi(G)\ge 3$ and all sufficiently large $n$. In this talk, we will survey the  works related to the Turan function and decomposition number of $H_{s,t}$.  

(Cowork with QIU Yu and LIU Boyuan)


报告人:颜娟副教授,新疆大学

报告时间:  2017年6月11日10:30

报告地点:数计学院4号楼229室

报告题目:A  problem about bisections of graphs

报告摘要:Bollobàs  and Scott conjectured that every graph G has a balanced bipartite spanning  subgraph H such that for each v∈V(G), dh(v)≧(dG(v)-1)/2,. In this talk, we show  that every graphic sequence has a realization for which this Bollobàs-Scott  conjecture holds, confirming a conjecture of Hartke and Seacrest. On the other  hand, we use an infinite family of graphs to illustrate that [(dG(v)-1)/2]  (rather than((dG(v)-1)/2) may have been the intended lower bound by Bollobàs and  Scott.