报告人:陆临渊教授,南卡罗来纳大学
报告时间:2017年5月16日15:00
报告地点:数计学院4号楼229室
报告题目:Extremal problems on posets and hypergraphs
报告摘要:We are interested in how large a family of subsets of the n-set [n]:={1,2,...,n} there is that avoids certain patterns. The foundational result of this sort, Sperner's Theorem from 1928, solves this problem for families that contain no two-element chains. Here we will present some recent results on extremal families avoiding a given subposet. When viewing the family of subsets as a hypergraph, we generalized several properties of Tur\'an density, such as supersaturation, blow-up, and suspension, from uniform hypergraphs to non-uniform hypergraphs. The Lubell function plays a key role in both areas.
报告人简介:陆临渊教授2002年于美国加州大学圣地亚哥分校(UCSD)获得理学博士学位。现在是南卡罗来纳大学教授,天津市千人计划专家,国际知名杂志《Journal of Combinatorics》编委,一直得到美国国家自然科学基金(NSF)的资助。目前,陆临渊教授已经在极值组合与图论、随机网络、图谱理论等众多领域做出了许多出色的工作,在组合图论权威刊物发表60多篇论文。著有《Complex graphs and networks》,合作者为金芳蓉(Fan Chung,美国文艺和科学院院士)。特别的,因为解决了Erdos提出的关于Folkman数f(3,3)的上界的一个著名猜想,从而获得100美元的奖励,Erdos所悬赏解决的问题都是极其困难的问题。