
Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering
Shaw Confemnce Center, Edmonton, Alberta, Canada May 9-12 1999

GRASP: An Effective Constructive Technique
For VLSI Circuit Partitioning

S.M. Areibi
Electrical Engineering Departmen t

Ryerson Polytechnic University
Toronto, Ontario, Canada

sareibi@ee.ry erson.ca

Abstract

Iterative methods are greedy or local in nature and
get easily trapped an local optima. Usually interchange
methods fail to converge to optimal solutions unless
they initially begin from good starting points. The
choice of starting point is a very crucial factor in the
pirformance of the iterative improvement algorithms
[I] . GRASP is a random adaptive simple heuristic
that intelligently constructs good initial solutions in
an eficient manner. Good initial partitions obtained
by GRASP allow the iterative improvement method
to refine that initial partition quality in a reasonable
amount of time, thus reducing the computational time
and enhancing the solution quality. Results obtained
indicate that on average the cut-size is reduced by 20%
and speedups of up to 90% were achieved using the
GRASP technique.

.

1 Introduction

Circuit partitioning deals with the task of dividing
a given circuit into two or more parts such that the
total weight of the signal nets interconnecting these
parts is minimi zed while the size of the different parts
meet a certain criteria. Traditionally, this problem
was important for breaking up a complex system in to
several custom ASICs. Now, with the increasing use
of FPGA-based emulators and prototyping systems,
partitioning is becoming even more critical. While i t
is possible to solve the case of unbounded partition
sizes exactly [2], the case of balanced partition sizes
is NP complete [3]. As a result, numerous heuris-
tic algorithms have been proposed [4]. Kernighan
and Lin (KL) [5] proposed a two-way graph parti-
tioning algorithm which became the basis for most of
the subsequent partitioning algorithms. The KL al-
gorithm operates only on balanced partitions[5] and

performs a number of passes over the cells of the cir-
cuit where each pass comprises a repeated operation
of pairwise cell swapping for all pairs of cells. Fiduccia
and Mattheyses (FM) [6] obtained a faster implemen-
tation of KL with the help of a new data structure,
called the bucket data structure. FM can operate on
unbalanced partitions and employs a single cell move
instead of a swap of a cell pair at each step in a pass.
Krishnamurthy [4] added to FM a look-ahead abil-
ity, which helps to break ties better in selecting a cell
to move. Sanchis [4] generalized Krishnamurthy’s al-
gorithm to a m ulti-way circuit partitioning algorithm.
Recently some new approaches that enhanced the per-
formance of the original KL algorithm appeared [7] [8]
and the reader is referred to the excellent survey in [4].

1.1 Heuristic Techniques

Iterative improvement techniques based on module
interchange are the most robust, simple and success-
ful heuristics in solving the partitioning and placement
problems. The main disadvantage of these heuristics is
that they mainly focus on the immediate area around
the current initial solution, thus no attempt is made to
explore all regions of the parameter space. More im-
portantly, i t has been shown that interchange meth-
ods fail to converge to “optimal” or “near optimal”
solutions unless they initially begin from “good” ini-
tial starting points [2]. Sechen [9] showed that over
100 trials or different runs were required to guarantee
that the best solution would be within twenty percent
of the optimum solution.

In this paper we introduce a greedy randomized
approach that is capable of obtaining good initial so-
lutions. These solutions allow the iterative improve-
ment technique to further refine them thus reducing
the computational time and enhancing the solution
quality. Section 2 introduces the main concept behind
the GRASP technique and details of implemen tatim.

0-7803-5579-2J99/$10.00 0 1999 IEEE 462

Section 3 gives a detail explanation of the different pa-
rameters that affect the GRASP technique and means
of tuning them. Finally in Section 4 we summarize the
results obtained using GRASP and show that it is ap-
plicable for flat Partitioners and also for those based
on multilevel criteria [8, lo].

tion in a construction is a function of those previously
chosen. The improvement phase typically consists of
a local search procedure as shown in Figure 1(C). A
more sophisticated local search based on Tabu Search
can be implemen ted instead of the simple local search
procedure.

2 GRASP

GRASP is a greedy randomized adaptive search
procedure that has been successful in solving many
combinatorial optimization problems efficien tly [ll].
The GRASP methodology was developed in the late
1980s, and the acronym was coined by Fe0 [12]. Each
iteration consists of a construction phase and a local
optimization phase. The key to success for local search
algorithms consists of the suitable choice of a neigh-
borhood structure, efficient neighborhood search tech-
nique, and the starting solution. The GRASP con-
struction phase plays an important role with respect
to this last point, since it produces good starting so-
lutions for local search. The construction phase intel-
ligently constructs an initial solution via an adaptive
randomized greedy function. Further improvemert in
the solution produced by the construction phase may
be possible by using either a simple local improvement
phase or a more sophisticated procedure in the form
of Tabu Search or Simulated Annealing.

Next, the various components comprising a GRASP
are defined, and a demonstration of how to adapt such
a heuristic for the circuit partitioning problem is pre-
sented.

2.1 Impleme ntation

Figure 1 shows a generic pseudo-code of the
GRASP heuristic. The main body of the GRASP al-
gorithm starts by reading the circuit netlist. The al-
gorithm starts with a construction phase followed by
a local improvement phase. The GRASP implemen-
tation terminates after a certain number of phases or
runs have passed. The construction phase as shown in
Figure 1(B) is iterative, greedy and adaptive. It is iter-
ative because the initial solution is built by considering
one element a t a time. The choice of the next element
to be added is determined by ordering all elements in
a list. The list of the best candidates is called the
restricted candidate list (RCL). It is greedy because
the addition of each element is guided by a greedy
function. The construction phase is randomized by
allowing the selection of the next element added to
the solution to be any element in the RCL. Finally, i t
is adaptive because the element chosen a t any itera-

0-7803-5579-2/99/$10.00 0 1999 TEEE

GREEDY RANDOMIZED SEARCH
(A) MAIN-GRASP()

1. Read-Circuit-NetList();
2. do

3. Construction-Phase(Greedy,Rand, Adaqt)
4. Local-Improvement-Phase(Initial Solution)
5. StoreBestSolution(Pmvious Solutions)

6. While not Done
7. ReportBest-Solution()

(B) ConstructionPhase()
1. While (construction not done)

2. Greedy: Create Candidate List (RCL)
3. Random: Module = Select frum RCL
4. Adaptive: Add new element to solution
5 . Feasibility: Check Feasibility of Solution

6. EndWhile

(C) Locallmprovemen tPhase()
1. Read Initial Solution
2. While (local optimum not reached)

4. EndWhile
5. Return-Best-Solution()

3. NewSolution = LocaLChanges(So1ution)

Figure 1: GRASP (Greedy Adaptive Search)

2.1.1 Construction Phase

Initially, all modules are placed into the same block
and the gains associated with modules are calculated
in an efficient manner. The discussion here will be
based on four-way partitioning and this can be gen-
eralized for the multi-way partitioning case. Assume
there are n modules and four blocks A, B, C, and D.
The heuristic could either place all modules initially
in block A and sequentially fill the other blocks by
moving the n modules to blocks B, C, and D, or can
create a dummy block (say X) and perform the same
operation until block X is empty. At each iteration
of the construction phase, the gains for moving mod-
ules to the current block being filled are examined,
and an RCL list is created using the modules with the
highest gains. As a module is mowd it is locked to its
new position (block) and its associated gain is removed
from the bucket list. The gains of the other modules
affected are updated accordingly. The construction
phase terminates when a feasible solution (partition)
is generated; Le, all blocks contain a certain number

463

1.5

r
3 0

1

(a) GRASP: Block Seiectlon Strategy

chip1 -
ind2 -- prim1 ..e

Sequential Random Complete
Selection Strategy

Figure 2: Block Selection Strategy

of modules (and every module belongs to exactly one
partition). The randomness in the GRASP heuristic is
due to the selection strategy that is used to determine
the next module to be appended to a certain block.
The probabilistic component of the GRASP randomly
chooses one of k best candidates in the restricted can-
didate list (RCL), but not necessarily the top candi-
date. This randomized selection strategy introduces
diversification of initial solutions to the method.

3 The GRASP Parameters

The GRASP has two characteristics which make i t
appealing to researchers. First it is easy to implemen t,
as seen from the previous section. Furthermore, only
a few parameters need to be set and tuned. Therefore,
development can focus on implementing efficierk data
structures to assure quick GRASP iterations. Some of
the parameters that need to be tuned for the circuit
partitioning problem are: Block Selection Strategy,
Gain Strategy, and the RCL Length. The Block Se-
lection Strategy determines the order by which blocks
are filled to obtain an initial solution. In Random S e
lection Strategy (RSS), all modules are placed into the
same block and the initial gains associated with mov-
ing modules to every other block are calculated. The
other blocks are filled randomly according to the best
gain associated with the move involved. In Sequen-
tial Selection Strategy (SSS), all modules are placed
into one block in a similar fashion to (RSS), but the
other blocks are filled sequentially by removing excess
modules from the initially oversized block and placing
them into the current block under consideration. In
Complete Selection Strategy (CSS), all modules are

1.5

cn

0
5

1

(b) GRASP: Gain Selection Strategy

chlpl -
prim* ..*.....

ind2 -6

GGS RGS BGS
Selection Strategy

Figure 3: Gain Selection Strategy

placed in a temporary block say X, and then every
other block is filled until completion (all blocks meet
the size constraint). As seen in Figure 2l CSS gives
the best performance with respect to RSS and SSS
techniques.

The Gain Strategy determines the highest gain
module to be assigned to a certain block. In Greedy
Gain Strategy (GGS), the module with the highest
gain is always selected and assigned to the appropriate
block. In Random Gain Strategy (RGS) all modules
are randomly selected from the RCL and assigned to
the blocks according to the Block Selection Strategy
used. Finally, the Biased Gain Strategy (BGS) is a
combination of the above two methods. Figure 3 illus-
trates that BGS strategy works well for most circuits
followed by GGS and RGS respectively. The length of
the RCL or restriction imposed on its values is a key
success for the implementation of the algorithm. Each
GRASP iteration produces a sample solution from an
unknown distribution of all obtainable results. The
mean and variance of the distribution are functions of
the restrictive nature of the candidate list. For exam-
ple, if the cardinality of the restricted candidate list
is limited to one, then only one solution will be pro-
duced and the variance of the distribution will be zero.
On the other hand if a less restrictive cardinality limit
is imposed, many different solutions will be produced
implying a larger variance. In [ll] two different re-
strictions are imposed on the RCL, Value Restriction
(RCL-VR), and Cardinality Restriction (RCL-CR). In
RCL-VR a module is allowed to be in the restricted
candidate list if its gain is within some percentage
(a) of the maximum gain. In RCL-CR, the candidate
list size is limited by including only the (L3) best ele-

'The gain has been normalized to one for the three circuits.

0-7803-5579-2/99/$10.000 1999 IEEE 464

(c) GRASP: RCL Length Strategy
1.12 , I

1.6

1.1 1 +

chlpl -
lnd2 +-

prml ..* '

1.06

0.96 ' I
0 1 2 3 4

RCL LENGTH

Figure 4: RCL Length Strategy

0.8 ' J
0 1 2 3 4

RCL LENGTH

Figure 5: CPU Time of RCL Length Strategy

ments. In this implementation, a third type of restric-
tion based on a combination of RCL-CR and RCL-
VR'is used (RCL-CVR). Figures 4, 5 show the perfor-
mance of the GRASP in terms of computation time
and quality of solution with different RCL lengths.

4 Computational Results

W e experimentally evaluated the qualik of parti-
tions produced by GRASP on some hypergraphs that
are part of widely used ACM/SIGDA circuit parti-
tioning benchmarks suite [13]. The characteristics of
these hypergraphs are shown in Table 1. The num-
ber of nodes, nets and pins vary from one circuit
to another. The last column indicate the average
number of nets connected to a cell. The proposed
method is implemented in C language on a Sun U1-

0-7803-5579-2/99/$10.000 1999 IEEE

tral/ l40 workstation. Table 2 compares the initial
solutions obtained by GRASP and those obtained by
a Genetic Algorithm technique[l4] and Barnes's eigen-
vector algorithm[l5]. The comparison is based on
good initial solutions obtained by each heuristic and
the computation time inwlved to obtain these solu-
tions. The CPU time for the partitions obtained by
the Barnes's algorithm include the time for forming
the graph adjacency matrix, finding the eigenvalues
and eigenvectors. The computation time used by the
GRASP is the least compared to the two other meth-
ods. The results in Table 3, 4, 5 assess the perfor-
mance of Sanchis Interchange heuristic, to that of the
GRASP. It is clear from the tables that the quality
of solutions obtained by the GRASP using only 5 dif-
ferent runs are superior to those obtained using the
Sanchis heuristic from 50 different random starting
points. The running times of the GRASP are also
much faster since less initial solutions are used. An-
other reason for the fast computation time is that the
local search heuristic has to perform less number of
passes, since it is starting from a good initial solution,
thus the fast convergence is obtained.

Table 6 shows the effect of GRASP on clustering.
Here the circuits are first clustered [16], the condensed
network is partitioned using a simple dynamic hill
climbing search technique. In the second stage, a lo-
cal search heuristic is used on the flattened network
to optimize local partitions of cells. The first part of
Table 6 is based on a random partition of the clus-
tered network. The second part is based on a GRASP
technique partition. It is evident from the table that
GRASP here achieves on average an improvement of
up to 10% compared with the random technique. Also,
the speedup increases as the size of the circuit in-
creases. For clustered circuits the improvement is
not as large as for flat circuits since the clustering
approach reduces the complexity of the problem and
fewer local minim a in the k-interchange neiglhorhood
structure are present. If a multilevel clustering ap-
proach were used then GRASP would have obtained
better results than the single level criteria used here.

5 Summary

In this paper we presented a greedy randomized
adaptive search procedure for circuit partitioning.
GRASP is easy to implement and only a few pa-
rameters need to be set and tuned. Quality of so-
lutions and running times of GRASP are far superior
to those based on Sanchis interchange heuristic. Good
initial partitions obtained by GRASP allow iterative

465

improvement methods to refine the initial partition
quality in a reasonable amount of time, thus reducing
the computational time and enhancing the solution

I

Ckt

Chip1
Chip2
Prim1

Table 1: Benchmarks used as test cases

GRASP '35 IMP
tiuts 'Time tiuts 'lime tiuts l ime
20 18 20 2.4 78%
15 19 14 1.7 6% 91%
60 91 56 14.0 6% 84%

Table 5: GRASP 6-W ay partitioning

Prim1
Prim2

Bio
Ind2

Indl

Table 2: Constructive Methods for 4-W 3 Partitioning

104 1.4 102 1.4 2% 0%
316 6.8 301 6.6 4.7% 3%

267 19 244 17 8.6% 10%
650 54 582 48 10.4% 11%

94 3.3 91 3.7 3.1% -12% Prim2
indl
Bio
ind2
in&
AVG

226 433 179 66 21% 84%
42 211 50 28.8 -16% 86%
102 1058 89 124 13% 88%
593 2661 325 155 45% 87%
514 2294 520 123 -1% 94%
196 848 156 64 20% 92% '

Ind3 (1 1051 I 79 1 1 921 I 64 11 12.3% 1 18%
AVG 11 321 I 21 11 291 I 17 I[10% I 19%

Table 6: Clustering Based 4-W ay partitioning
Table 3: GRASP 2-W ay partitioning

0-7803-5579-2/99/$10.000 1999 IEEE 466

REFERENCES

[l] L.Y. Song and A. Vannelli. An Efficient Linear

[13] K. Roberts and B. Preas. Physical Design Work-
shop 1987. Technical report, MCNC, Marriott’s
Hilton Head Resort,South Carolina, April 1987.

Systems Approach for Finding Netlist Partitions.
In Proceedings of The 1992 C u t o m Integrated
circuits Conference, pages 5.2.1 - 5.2.4, 1992.

[14] S. Areibi and A. Vannelli. Advanced Search
Techniques for Circuit Partitioning. In DIMA CS
Series in Discrete Mathematics and Theoretical

[2] S. Areibi. Ph.D Thesis: Towards Optimal Circuit
Layout Using Advanced Search Techniques, 1995.

Computer Science, pages 77-98, Rutgers State
University, New Jersey, 1994.

[3] M.R. Garey and D.S. Johnson. Computers and
Intractability. Freeman, San Francisco CA, 1979.

[4] C.J. Alpert and A.B. Kahng. Netlist Partitioning:
A Survey. Integration, the VLSI Journal, pages
64-80,1995.

[5] B.W. Kernighan and S. Lin. An Efficien t Heuris-
tic Procedure for Partitioning Graphs. The Bell
System Technical Journal, 49(2):291-307, Febru-
ary 1970.

[6] C.M. Fiduccia and R.M. Mattheyses. A Linear-
Time Heuristic for Improving Netmrk Partitions.
In Proceedings of 19th DAC, pages 175-181, Las
Vegas, Nevada, June 1982. ACM/IEEE.

[7] S. Dutt and W. Deng. VLSI Circuit P artitioning
by Cluster-Removal Using Iterative Improvement
Techniques. In IEEE International Conference on
CAD, pages 194-200. ACM/IEEE, 1996.

[8] C.J. Alpert, J. Huang, and A. Kahng. Multi-
level Circuit Partitioning. In Proceedings of 34th
DAC, pages 530-533, Anaheim, CA, June 1997.
ACM/IEEE.

[9] C. Sechen and D. Chen. An improved Objective
Function for Min-Cut Circuit Partitioning. ZEEE
Zhnsaction on CAD, pages 502-505, 1988.

[lo] G. Karypis and V. Kumar. Multilevel Graph Par-
titioning Schemes. In Proceedings of the 1995
Intl conf on Parallel Processing, pages 113-122.
ACM/IEEE, 1995.

[ll] T. Feo, M. Resende, and S . Smith. A Greedy
Randomized Adaptive Search Procedure for The
Maxim um Independent Set. Operations Research,
1994. To Appear In: Operations Research.

[12] T. Feo and M. Resende. A Probabilistic Heuris-
tic for a Computationally Difficult Set Covering
Problem. Operation Research Letters, 8:67,71,
1989.

,

[15] S. Areibi and A. Vannelli. A Combined Eigen-
vector Tabu Search Approach for Circuit Parti-
tioning. In Proceedings of The 1993 Custom In-
tegrated Circuits Conference, pages 9.7.1 - 9.7.4,
San Diego, 1993.

[16] S. Areibi and A. Vannelli. An Efficient Clustering
Technique for Circuit Partitioning. In IEEE In-
ternational Symposium on Circuits and Systems,
pages 671-674, San Diego, California, 1996.

0-7803-5579-2/99/$10.00 0 1999 BEE 467

