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Abstract 

Iterative methods are greedy or local in nature and 
get easily trapped an local optima. Usually interchange 
methods fail to converge to optimal solutions unless 
they initially begin from good starting points. The 
choice of starting point is a very crucial factor in the 
pirformance of the iterative improvement algorithms 
[I ] .  GRASP is a random adaptive simple heuristic 
that intelligently constructs good initial solutions in 
an eficient manner. Good initial partitions obtained 
by GRASP allow the iterative improvement method 
to refine that initial partition quality in a reasonable 
amount of time, thus reducing the computational time 
and enhancing the solution quality. Results obtained 
indicate that on average the cut-size is reduced by 20% 
and speedups of up to 90% were achieved using the 
GRASP technique. 

. 

1 Introduction 

Circuit partitioning deals with the task of dividing 
a given circuit into two or more parts such that the 
total weight of the signal nets interconnecting these 
parts is minimi zed while the size of the different parts 
meet a certain criteria. Traditionally, this problem 
was important for breaking up a complex system in to  
several custom ASICs. Now, with the increasing use 
of FPGA-based emulators and prototyping systems, 
partitioning is becoming even more critical. While i t  
is possible to solve the case of unbounded partition 
sizes exactly [2], the case of balanced partition sizes 
is NP complete [3]. As a result, numerous heuris- 
tic algorithms have been proposed [4]. Kernighan 
and Lin (KL) [5] proposed a two-way graph parti- 
tioning algorithm which became the basis for most of 
the subsequent partitioning algorithms. The KL al- 
gorithm operates only on balanced partitions[5] and 

performs a number of passes over the cells of the cir- 
cuit where each pass comprises a repeated operation 
of pairwise cell swapping for all pairs of cells. Fiduccia 
and Mattheyses (FM) [6] obtained a faster implemen- 
tation of KL with the help of a new data structure, 
called the bucket data structure. FM can operate on 
unbalanced partitions and employs a single cell move 
instead of a swap of a cell pair at each step in a pass. 
Krishnamurthy [4] added to FM a look-ahead abil- 
ity, which helps to break ties better in selecting a cell 
to move. Sanchis [4] generalized Krishnamurthy’s al- 
gorithm to a m ulti-way circuit partitioning algorithm. 
Recently some new approaches that enhanced the per- 
formance of the original KL algorithm appeared [7] [8] 
and the reader is referred to the excellent survey in [4]. 

1.1 Heuristic Techniques 

Iterative improvement techniques based on module 
interchange are the most robust, simple and success- 
ful heuristics in solving the partitioning and placement 
problems. The main disadvantage of these heuristics is 
that they mainly focus on the immediate area around 
the current initial solution, thus no attempt is made to 
explore all regions of the parameter space. More im- 
portantly, i t  has been shown that interchange meth- 
ods fail to converge to “optimal” or “near optimal” 
solutions unless they initially begin from “good” ini- 
tial starting points [2]. Sechen [9] showed that over 
100 trials or different runs were required to guarantee 
that the best solution would be within twenty percent 
of the optimum solution. 

In this paper we introduce a greedy randomized 
approach that is capable of obtaining good initial so- 
lutions. These solutions allow the iterative improve- 
ment technique to further refine them thus reducing 
the computational time and enhancing the solution 
quality. Section 2 introduces the main concept behind 
the GRASP technique and details of implemen tatim. 
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Section 3 gives a detail explanation of the different pa- 
rameters that affect the GRASP technique and means 
of tuning them. Finally in Section 4 we summarize the 
results obtained using GRASP and show that it is ap- 
plicable for flat Partitioners and also for those based 
on multilevel criteria [8, lo]. 

tion in a construction is a function of those previously 
chosen. The improvement phase typically consists of 
a local search procedure as shown in Figure 1(C). A 
more sophisticated local search based on Tabu Search 
can be implemen ted instead of the simple local search 
procedure. 

2 GRASP 

GRASP is a greedy randomized adaptive search 
procedure that has been successful in solving many 
combinatorial optimization problems efficien tly [ll]. 
The GRASP methodology was developed in the late 
1980s, and the acronym was coined by Fe0 [12]. Each 
iteration consists of a construction phase and a local 
optimization phase. The key to success for local search 
algorithms consists of the suitable choice of a neigh- 
borhood structure, efficient neighborhood search tech- 
nique, and the starting solution. The GRASP con- 
struction phase plays an important role with respect 
to this last point, since it produces good starting so- 
lutions for local search. The construction phase intel- 
ligently constructs an initial solution via an adaptive 
randomized greedy function. Further improvemert in 
the solution produced by the construction phase may 
be possible by using either a simple local improvement 
phase or a more sophisticated procedure in the form 
of Tabu Search or Simulated Annealing. 

Next, the various components comprising a GRASP 
are defined, and a demonstration of how to adapt such 
a heuristic for the circuit partitioning problem is pre- 
sented. 

2.1 Impleme ntation 

Figure 1 shows a generic pseudo-code of the 
GRASP heuristic. The main body of the GRASP al- 
gorithm starts by reading the circuit netlist. The al- 
gorithm starts with a construction phase followed by 
a local improvement phase. The GRASP implemen- 
tation terminates after a certain number of phases or 
runs have passed. The construction phase as shown in 
Figure 1(B) is iterative, greedy and adaptive. It is iter- 
ative because the initial solution is built by considering 
one element a t  a time. The choice of the next element 
to be added is determined by ordering all elements in 
a list. The list of the best candidates is called the 
restricted candidate list (RCL). It is greedy because 
the addition of each element is guided by a greedy 
function. The construction phase is randomized by 
allowing the selection of the next element added to 
the solution to be any element in the RCL. Finally, i t  
is adaptive because the element chosen a t  any itera- 
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GREEDY RANDOMIZED SEARCH 
(A) MAIN-GRASP() 

1. Read-Circuit-NetList(); 
2. do 

3. Construction-Phase( Greedy,Rand, Adaqt) 
4. Local-Improvement-Phase(Initial Solution) 
5. StoreBestSolution(Pmvious Solutions) 

6. While not Done 
7. ReportBest-Solution() 

(B) ConstructionPhase() 
1. While (construction not done) 

2. Greedy: Create Candidate List (RCL) 
3. Random: Module = Select frum RCL 
4. Adaptive: Add new element to solution 
5 .  Feasibility: Check Feasibility of Solution 

6. EndWhile 

(C) Locallmprovemen tPhase() 
1. Read Initial Solution 
2. While (local optimum not reached) 

4. EndWhile 
5. Return-Best-Solution() 

3. NewSolution = LocaLChanges(So1ution) 

Figure 1: GRASP (Greedy Adaptive Search) 

2.1.1 Construction Phase 

Initially, all modules are placed into the same block 
and the gains associated with modules are calculated 
in an efficient manner. The discussion here will be 
based on four-way partitioning and this can be gen- 
eralized for the multi-way partitioning case. Assume 
there are n modules and four blocks A, B, C, and D. 
The heuristic could either place all modules initially 
in block A and sequentially fill the other blocks by 
moving the n modules to blocks B, C, and D, or can 
create a dummy block (say X) and perform the same 
operation until block X is empty. At each iteration 
of the construction phase, the gains for moving mod- 
ules to the current block being filled are examined, 
and an RCL list is created using the modules with the 
highest gains. As a module is mowd it  is locked to its 
new position (block) and its associated gain is removed 
from the bucket list. The gains of the other modules 
affected are updated accordingly. The construction 
phase terminates when a feasible solution (partition) 
is generated; Le, all blocks contain a certain number 
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(a) GRASP: Block Seiectlon Strategy 
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Figure 2: Block Selection Strategy 

of modules (and every module belongs to exactly one 
partition). The randomness in the GRASP heuristic is 
due to the selection strategy that is used to determine 
the next module to be appended to a certain block. 
The probabilistic component of the GRASP randomly 
chooses one of k best candidates in the restricted can- 
didate list (RCL), but not necessarily the top candi- 
date. This randomized selection strategy introduces 
diversification of initial solutions to the method. 

3 The GRASP Parameters 

The GRASP has two characteristics which make i t  
appealing to researchers. First it is easy to implemen t, 
as seen from the previous section. Furthermore, only 
a few parameters need to be set and tuned. Therefore, 
development can focus on implementing efficierk data 
structures to assure quick GRASP iterations. Some of 
the parameters that need to be tuned for the circuit 
partitioning problem are: Block Selection Strategy, 
Gain Strategy, and the RCL Length. The Block Se- 
lection Strategy determines the order by which blocks 
are filled to obtain an initial solution. In Random S e  
lection Strategy (RSS), all modules are placed into the 
same block and the initial gains associated with mov- 
ing modules to every other block are calculated. The 
other blocks are filled randomly according to the best 
gain associated with the move involved. In Sequen- 
tial Selection Strategy (SSS), all modules are placed 
into one block in a similar fashion to (RSS), but the 
other blocks are filled sequentially by removing excess 
modules from the initially oversized block and placing 
them into the current block under consideration. In 
Complete Selection Strategy (CSS), all modules are 
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(b) GRASP: Gain Selection Strategy 
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Figure 3: Gain Selection Strategy 

placed in a temporary block say X, and then every 
other block is filled until completion (all blocks meet 
the size constraint). As seen in Figure 2l  CSS gives 
the best performance with respect to RSS and SSS 
techniques. 

The Gain Strategy determines the highest gain 
module to be assigned to a certain block. In Greedy 
Gain Strategy (GGS), the module with the highest 
gain is always selected and assigned to the appropriate 
block. In Random Gain Strategy (RGS) all modules 
are randomly selected from the RCL and assigned to 
the blocks according to the Block Selection Strategy 
used. Finally, the Biased Gain Strategy (BGS) is a 
combination of the above two methods. Figure 3 illus- 
trates that BGS strategy works well for most circuits 
followed by GGS and RGS respectively. The length of 
the RCL or restriction imposed on its values is a key 
success for the implementation of the algorithm. Each 
GRASP iteration produces a sample solution from an 
unknown distribution of all obtainable results. The 
mean and variance of the distribution are functions of 
the restrictive nature of the candidate list. For exam- 
ple, if the cardinality of the restricted candidate list 
is limited to one, then only one solution will be pro- 
duced and the variance of the distribution will be zero. 
On the other hand if a less restrictive cardinality limit 
is imposed, many different solutions will be produced 
implying a larger variance. In [ll] two different re- 
strictions are imposed on the RCL, Value Restriction 
(RCL-VR), and Cardinality Restriction (RCL-CR). In 
RCL-VR a module is allowed to be in the restricted 
candidate list if its gain is within some percentage 
(a) of the maximum gain. In RCL-CR, the candidate 
list size is limited by including only the (L3) best ele- 

'The gain has been normalized to one for the three circuits. 
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Figure 4: RCL Length Strategy 
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Figure 5: CPU Time of RCL Length Strategy 

ments. In this implementation, a third type of restric- 
tion based on a combination of RCL-CR and RCL- 
VR'is used (RCL-CVR). Figures 4, 5 show the perfor- 
mance of the GRASP in terms of computation time 
and quality of solution with different RCL lengths. 

4 Computational Results 

W e  experimentally evaluated the qualik of parti- 
tions produced by GRASP on some hypergraphs that 
are part of widely used ACM/SIGDA circuit parti- 
tioning benchmarks suite [13]. The characteristics of 
these hypergraphs are shown in Table 1. The num- 
ber of nodes, nets and pins vary from one circuit 
to another. The last column indicate the average 
number of nets connected to a cell. The proposed 
method is implemented in C language on a Sun U1- 
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tral/ l40 workstation. Table 2 compares the initial 
solutions obtained by GRASP and those obtained by 
a Genetic Algorithm technique[l4] and Barnes's eigen- 
vector algorithm[l5]. The comparison is based on 
good initial solutions obtained by each heuristic and 
the computation time inwlved to obtain these solu- 
tions. The CPU time for the partitions obtained by 
the Barnes's algorithm include the time for forming 
the graph adjacency matrix, finding the eigenvalues 
and eigenvectors. The computation time used by the 
GRASP is the least compared to the two other meth- 
ods. The results in Table 3, 4, 5 assess the perfor- 
mance of Sanchis Interchange heuristic, to that of the 
GRASP. It is clear from the tables that the quality 
of solutions obtained by the GRASP using only 5 dif- 
ferent runs are superior to those obtained using the 
Sanchis heuristic from 50 different random starting 
points. The running times of the GRASP are also 
much faster since less initial solutions are used. An- 
other reason for the fast computation time is that the 
local search heuristic has to perform less number of 
passes, since it is starting from a good initial solution, 
thus the fast convergence is obtained. 

Table 6 shows the effect of GRASP on clustering. 
Here the circuits are first clustered [16], the condensed 
network is partitioned using a simple dynamic hill 
climbing search technique. In the second stage, a lo- 
cal search heuristic is used on the flattened network 
to optimize local partitions of cells. The first part of 
Table 6 is based on a random partition of the clus- 
tered network. The second part is based on a GRASP 
technique partition. It is evident from the table that 
GRASP here achieves on average an improvement of 
up to 10% compared with the random technique. Also, 
the speedup increases as the size of the circuit in- 
creases. For clustered circuits the improvement is 
not as large as for flat circuits since the clustering 
approach reduces the complexity of the problem and 
fewer local minim a in the k-interchange neiglhorhood 
structure are present. If a multilevel clustering ap- 
proach were used then GRASP would have obtained 
better results than the single level criteria used here. 

5 Summary 

In this paper we presented a greedy randomized 
adaptive search procedure for circuit partitioning. 
GRASP is easy to implement and only a few pa- 
rameters need to be set and tuned. Quality of so- 
lutions and running times of GRASP are far superior 
to those based on Sanchis interchange heuristic. Good 
initial partitions obtained by GRASP allow iterative 
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improvement methods to refine the initial partition 
quality in a reasonable amount of time, thus reducing 
the computational time and enhancing the solution 

I 

Ckt 

Chip1 
Chip2 
Prim1 

Table 1: Benchmarks used as test cases 

GRASP '35 IMP 
tiuts 'Time tiuts 'lime tiuts l ime 
20 18 20 2.4 78% 
15 19 14 1.7 6% 91% 
60 91 56 14.0 6% 84% 

Table 5:  GRASP 6-W ay partitioning 

Prim1 
Prim2 

Bio 
Ind2 

Indl 

Table 2: Constructive Methods for 4-W 3 Partitioning 

104 1.4 102 1.4 2% 0% 
316 6.8 301 6.6 4.7% 3% 

267 19 244 17 8.6% 10% 
650 54 582 48 10.4% 11% 

94 3.3 91 3.7 3.1% -12% Prim2 
indl 
Bio 
ind2 
in& 
AVG 

226 433 179 66 21% 84% 
42 211 50 28.8 -16% 86% 
102 1058 89 124 13% 88% 
593 2661 325 155 45% 87% 
514 2294 520 123 -1% 94% 
196 848 156 64 20% 92% ' 

Ind3 ( 1  1051 I 79 1 1  921 I 64 11 12.3% 1 18% 
AVG 11 321 I 21 11 291 I 17 I[ 10% I 19% 

Table 6:  Clustering Based 4-W ay partitioning 
Table 3: GRASP 2-W ay partitioning 
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