首 页 中心简介 成员介绍 学术交流 教育部重点实验室 科研动态 研究生培养 省数学会 English
发表日期:2017年6月7日      

侯新民副教授、颜娟副教授学术报告

 

报告人:侯新民副教授,中国科学技术大学

报告时间: 2017年6月11日9:30

报告地点:数计学院4号楼229室

报告题目:Turan number and decomposition number of intersecting odd cycles

报告摘要:Given a graph $H$, the Turan function $ex(n;H)$ is the maximum number of edges in a graph on $n$ vertices that does not contain $H$ as a subgraph. Let $s, t$ be integers and let $H_{s,t}$ be a graph consisting of $s$ triangles and $t$ cycles of odd lengths at least 5 which intersect in exactly one common vertex. Let $\phi(n, H)$ be the smallest integer such that, for all graphs $G$ on $n$ vertices, the edge set $E(G)$ can be partitioned into at most $\phi(n, H)$ parts, of which every part either is a single edge or forms a graph isomorphic to $H$. Pikhurko and Sousa conjectured that $\phi(n, H) = ex(n;H)$ for all $\chi(G)\ge 3$ and all sufficiently large $n$. In this talk, we will survey the works related to the Turan function and decomposition number of $H_{s,t}$.

(Cowork with QIU Yu and LIU Boyuan)

________________________________________________________________________________________________________

报告人:颜娟副教授,新疆大学

报告时间: 2017年6月11日10:30

报告地点:数计学院4号楼229室

报告题目:A problem about bisections of graphs

报告摘要:Bollobàs and Scott conjectured that every graph G has a balanced bipartite spanning subgraph H such that for each v∈V(G), dh(v)≧(dG(v)-1)/2,. In this talk, we show that every graphic sequence has a realization for which this Bollobàs-Scott conjecture holds, confirming a conjecture of Hartke and Seacrest. On the other hand, we use an infinite family of graphs to illustrate that [(dG(v)-1)/2] (rather than((dG(v)-1)/2) may have been the intended lower bound by Bollobàs and Scott.


相关信息:
 没有相关信息

 
 
 

| 加入收藏 | 设为首页 | 管理系统 |


版权所有: 福州大学离散数学与理论计算机科学研究中心
地址:福建省福州市福州地区大学新区学园路2号   邮编:350116
联系电话: 0591-83058092 ,83846655
传真:0591-83846622  E-mail: dimacs@fzu.edu.cn