首 页 中心简介 成员介绍 学术交流 教育部重点实验室 科研动态 研究生培养 省数学会 English
发表日期:2016年9月5日      

台湾清华大学何宗易教授学术报告

 

Talk 1:Digital Microfluidic Biochips: Towards Hardware/Software Co-Design and Cyberphysical System Integration

报告时间:201696号,9am-10:30am

报告地点:数计学院4号楼第2报告厅

Abstract:

Advances in droplet-based digital microfluidic biochips (DMFBs) have led to the emergence of biochips for automating laboratory procedures in biochemistry and molecular biology. These devices enable the precise control of microliter of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. To meet the challenges of increasing design complexity and precision, the interplay between hardware and software through sensor-based cyberphysical integration will be involved to build DMFBs effectively. This talk offers attendees an opportunity to bridge the semiconductor ICs/system industry with the biomedical and pharmaceutical industries. The talk will first describe emerging applications in biology and biochemistry that can benefit from advances in electronic "biochips". The presenter will next describe technology platforms for accomplishing "biochemistry on a chip", and introduce the audience to microarrays and fluidic actuation methods based on microfluidics. The droplet-based "digital" microfluidic platform based on electrowetting will be described in considerable detail. Next, the presenter will describe fabrication techniques for digital microfluidic biochips, followed by computer-aided design, design-for-testability, cyberphysical integration, and reconfiguration aspects of chip/system design. Synthesis algorithms and methods will be presented to map behavioral descriptions to a digital microfluidic platform, and generate an optimized schedule of bioassay operations, chip layout, and droplet-flow paths. In this way, the audience will see how a "biochip compiler" can translate protocol descriptions provided by an end user (e.g., a chemist or a nurse at a doctor's clinic) to a set of optimized and executable fluidic instructions that will run on the underlying digital microfluidic platform.

 

 

Talk 2: The Coming of Age of Flow-Based Microfluidics: EDA Solutions for Enabling Biochemistry on a Chip

报告时间:201696号,2:30pm-4:00pm

地点:数计学院4号楼第2报告厅

Abstract:

As the design complexity rapidly increases, the manufacture and the biochemical analysis of flow-based microfluidic biochip become more complicated. According to recent study, the biochips can now use more than 25,000 valves and about a million features to run 9,216 parallel polymerase chain reactions. Moreover, the number of mechanical valves per square inch for flow-based microfluidic biochips has grown exponentially and four times faster than the reflection of Moore's Law. Although the scale for flow-based microfluidic biochips is enlarging and the total amount of the valves fabricated on a chip are also growing significantly, computer-aided design (CAD) tools are still in their infancy today. Designers are using bottom-up full-custom design approaches involving multiple non-automated steps to manually adjust the components and the connection to satisfy the steps of desired biochemical applications. As a result, the development of explicit design rules and strategies allowing modular top-down synthesis methodologies are needed, in order to provide the same level of CAD support for the biochip designer as the one that are currently done for the semiconductor industry. This talk will offer attendees an opportunity to bridge the semiconductor ICs/system industry with the biomedical and pharmaceutical industries. The talk will first describe emerging applications in biology and biochemistry that can benefit from advances in electronic “biochips”. The presenter will next describe technology platforms for accomplishing “biochemistry on a chip”, and introduce the audience to flow-based “continuous” microfluidics based on microvalve technology. Next, the presenter will describe system-level synthesis includes operation scheduling and resource binding algorithms, and physical-level synthesis includes placement and routing optimizations. In this way, the audience will see how a “biochip compiler” can translate protocol descriptions provided by an end user (e.g., a chemist or a nurse at a doctor’s clinic) to a set of optimized and executable fluidic instructions that will run on the underlying microfluidic platform. Testing techniques will be described to detect faults after manufacture and during field operation. A classification of defects will be presented based on data for fabricated chips. Appropriately fault models will be developed and presented to the audience. Finally, a number of case studies with recent applications on flow-based microfluidic biochips such as antibiotic susceptibility test will be discussed. Future challenges and several open problems in this area will also be presented.

Speaker Bio:

Tsung-Yi Ho received his Ph.D. in Electrical Engineering from National Taiwan University in 2005. He is a Professor with the Department of Computer Science of National Tsing Hua University, Hsinchu, Taiwan. His research interests include design automation and test for microfluidic biochips and nanometer integrated circuits. He has presented 10 tutorials and contributed 10 special sessions in ACM/IEEE conferences, all in design automation for microfluidic biochips. He has been the recipient of the Invitational Fellowship of the Japan Society for the Promotion of Science (JSPS), the Humboldt Research Fellowship by the Alexander von Humboldt Foundation, and the Hans Fischer Fellow by the Institute of Advanced Study of the Technical University of Munich, Germany. He was a recipient of the Best Paper Awards at the VLSI Test Symposium (VTS) in 2013 and IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems in 2015. He served as a Distinguished Visitor of the IEEE Computer Society for 2013-2015, the Chair of the IEEE Computer Society Tainan Chapter for 2013-2015, and the Chair of the ACM SIGDA Taiwan Chapter for 2014-2015. Currently he serves as an ACM Distinguished Speaker, a Distinguished Lecturer of the IEEE Circuits and Systems Society, and Associate Editor of the ACM Journal on Emerging Technologies in Computing Systems, ACM Transactions on Design Automation of Electronic Systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, and IEEE Transactions on Very Large Scale Integration Systems, Guest Editor of IEEE Design & Test of Computers, and the Technical Program Committees of major conferences, including DAC, ICCAD, DATE, ASP-DAC, ISPD, ICCD, etc. 



相关信息:
 没有相关信息

 
 
 

| 加入收藏 | 设为首页 | 管理系统 |


版权所有: 福州大学离散数学与理论计算机科学研究中心
地址:福建省福州市福州地区大学新区学园路2号   邮编:350116
联系电话: 0591-83058092 ,83846655
传真:0591-83846622  E-mail: dimacs@fzu.edu.cn